НОВОСТИ  КНИГИ  ЭНЦИКЛОПЕДИЯ  ЮМОР  КАРТА САЙТА  ССЫЛКИ  О НАС






предыдущая главасодержаниеследующая глава

Четыре всемогущие буквы, или суть всего сущего на земле

Уже после того, как митохондрии были открыты, электронный микроскоп помог биологам обнаружить в клетке очень важные для жизни частицы - мельчайшие тельца - рибосомы. Лет двадцать назад о них и понятия не имели. А теперь мы знаем, что рибосомы - это ультрамалые, размером в сотые доли микрона, центры производства белка. В них из аминокислот создаются белки.

Аминокислоты - органические вещества, содержащие одновременно кислую и щелочную группы. В настоящее время их известно немногим больше двадцати. Соединяясь в разных сочетаниях друг с другом, аминокислоты образуют молекулы белков. В нашем теле десятки тысяч разносортных белков, и все они сложены из двух десятков аминокислот, соединяющихся в каждом белке в характерной только для него последовательности.

Лишь недавно биохимики составили достаточно ясное представление о том, как идет такой синтез.

Прежде всего, как и для другого производственного процесса, для синтеза белков необходимо сырье. Оно есть - аминокислоты. Растительные клетки создают их сами, а клетки животных многие аминокислоты получают из переваренной пищи.

Нужны рабочие. Есть и они - ферменты. Нужна энергия - мы уже знаем, откуда она берется. Солнце и молекулы АТФ доставляют ее. Ферменты активизируют аминокислоты, а проще говоря, помогают им получить энергию от АТФ.

Молекула АТФ разрывается, и обе ее части соединяются с аминокислотой и ферментом в единый комплекс. Когда АТФ разрывается, энергия химических связей, скреплявшая ее, отдается аминокислоте. Та переходит на более высокий энергетический уровень и поэтому активнее вступает в химические реакции.

Вот тут в игру и входит РНК - рибонуклеиновая кислота. Ее роль в синтезе белков исключительно важна. РНК выступает в двух лицах: РНК-переносчик транспортирует активизированную аминокислоту к другой РНК-матрице, которая диктует порядок сборки белка из аминокислот.

РНК-матрицы - они значительно длиннее транспортных - располагаются главным образом в рибосомах. Здесь идет массовое производство белков. Только некоторые особые белки синтезируются, по-видимому, в ядре и в митохондриях.

Итак, РНК-транспортер доставляет аминокислоту, предварительно наделенную нужной дозой энергии, прямо к РНК-матрице. Аминокислота на ее поверхности может удержаться не где попало, а только на строго определенном месте. Для каждой из двадцати аминокислот на поверхности, синтезирующей белок РНК, приготовлена своя якорная стоянка. Никакая другая аминокислота ее занять не может.

Каждые полсекунды аминокислота ложится к аминокислоте, всегда на свое место. Десятки и сотни, даже тысячи, аминокислот выстраиваются в ряд на поверхности РНК. Затем аминокислоты соединяются друг с другом в длинную цепь, и готовая молекула белка соскакивает с нуклеиновой матрицы. Порядок построения аминокислот на РНК, а иначе говоря, формула будущего белка, зависит от химической структуры той РНК, на поверхности которой они выстраиваются.

А эту структуру, эту матрицу как бы штампует по своему образу и подобию другая нуклеиновая кислота - ДНК. РНК, химический шифр которой руководит синтезом белка, сама слепок, копия с ДНК. Молекула РНК "представляет собой как бы приводной ремень, передающий информацию от ядра к рибосомам", - говорит крупнейший наш генетик Николай Петрович Дубинин. А ДНК - это оригинал. Это первоисточник генетической информации. В ДНК и скрыта наша наследственность. Алфавитом, в котором всего четыре буквы и все слова, сложенные из них, трехбуквенные, закодированы в ней врожденные свойства живого организма.

Как закодированы?

Приблизительно так же, как человеческие мысли шифруются и передаются от человека к человеку в словах каждого языка. Все идеи человечества, все его бытовые навыки и все знания закодированы в какой-нибудь сотне тысяч слов. Каждое слово, или кодовая группа, состоит из букв. Их немного, несколько десятков. Буквы образуют алфавит. Таким образом., все богатства человеческой мысли, накопленные за тысячелетия, весь этот необъятный, казалось бы, арсенал знаний и идей может быть выражен, сохранен на полках библиотек и передан следующим поколениям в сочетаниях всего лишь нескольких десятков букв, или, как говорят кибернетики, символов.

Но та же самая сверхобширная информация может быть выражена еще меньшим числом букв - всего двумя символами. Примером служит азбука Морзе, в которой различная последовательность точек и тире способна передать все мысли человеческие.

У ДНК алфавит четырехбуквенный. Буквами служат особые химические соединения - азотистые основания: аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц), а кодовыми группами, или словами, - их сочетания в молекуле ДНК; как в азбуке Морзе чередование тире и точек.

Из скольких же букв, скольких азотистых оснований составлены передающие наследственную информацию слова?

Проще всего в этом разобраться на примере синтеза белков. Ведь первое звено в длинной цепи построения организма по плану, заключенному в наследственности, - это созидание специфичных для него белков.

Все белки, а их великое множество сортов и разновидностей, строятся на РНК из двадцати аминокислот. Я уже говорил об этом. Так вот каждая аминокислота занимает свое место на РНК напротив соответствующей ей кодовой группы, то есть соответствующего сочетания азотистых оснований.

Их всего четыре, а аминокислот двадцать. Значит, каждую аминокислоту не может кодировать одно-единственное основание - однобуквенное слово в генетическом лексиконе.

Может быть, двухбуквенное подойдет? Нет, и двухбуквенных мало: ведь аминокислот двадцать, а из четырех букв можно образовать только шестнадцать двухбуквенных слов.

А вот трехбуквенных будет достаточно и даже с избытком. Ведь каждый из наших четырех символов А, Т, Г, Ц, которыми мы обозначили кодовые азотистые основания, может быть и первой, и второй, и третьей буквой в трехбуквенном слове. Нетрудно подсчитать, что таких слов шестьдесят четыре.

Шестьдесят четыре, а аминокислот-то всего двадцать! Значит, сорок четыре слова-триплета в генетическом языке ДНК лишние?

Впрочем, едва ли. Возможно, что некоторым наиболее часто повторяющимся в белке аминокислотам соответствует не одна, а несколько разных кодовых групп. Одна и та же аминокислота может сесть на поверхность РНК и там, где друг за другом следуют азотистые основания в такой, говоря к примеру, последовательности - АГЦ и в такой - АЦГ, но нигде больше: никакое другое слово генетического алфавита ее не привлечет.

А возможно, что некоторые из кодовых групп в наследственном шифре своего рода знаки препинания. Обозначают начало и конец генетической фразы. Ведь все кодовые символы в молекулах ДНК следуют друг за другом без промежутков.

"Скажем, ...ЦАТЦАТЦАТ...

Как разбить на слова эту фразу? Так ли... ЦАТ, ЦАТ, ЦАТ?.. Или: ...Ц, АТЦ, АТЦ, АТ?

Возможно, что некоторые сочетания азотистых радикалов как раз и означают, где ставить точку и откуда начинать чтение генетической информации ДНК и ее копии в РНК. Пока еще биохимики не нашли на этот вопрос окончательного ответа.

Итак, мы установили, что в генетическом алфавите всего четыре буквы, а все слова, из них составленные, трехбуквенные. Не правда ли, не верится, что этих символов и слов достаточно, чтобы закодировать весь бесконечно разнообразный план строения организма - от синтеза специфических для его тела белков до цвета глаз и свойств характера?

Слов, которыми записаны генетические фразы, очень много. В некоторых молекулах ДНК до 30 тысяч азотистых оснований. Число их взаимных сочетаний поистине бесконечно. Ведь если бы азотистых оснований в каждой ДНК было всего по сто, полная коллекция их различных сочетаний достигла бы 4100. Четыре в сотой степени! Это больше, чем атомов во всей солнечной системе!

А ведь молекулы ДНК содержат не сто, а тысячи и десятки тысяч азотистых оснований! Трудно даже вообразить, какое великое множество генетических фраз, иначе говоря - генов, способны они образовать, объединяясь друг с другом в разной последовательности.

Подсчитали также, что, если бы удалось извлечь из клеток человека все молекулярные нити ДНК и развернуть их в одну цепь, она протянулась бы через всю солнечную систему!

После этих упражнений в арифметике вы теперь, надо полагать, с большим уважением отнесетесь к четырем буквам генетического алфавита: их выразительные способности действительно безграничны.

предыдущая главасодержаниеследующая глава









© ANIMALKINGDOM.SU, 2001-2021
При использовании материалов сайта активная ссылка обязательна:
http://animalkingdom.su/ 'Мир животных'

Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь